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Vapor—Liquid Equilibrium for Dimethyl Disulfide 4+ Butane,
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ABSTRACT: Isothermal vapor—liquid equilibrium (VLE) of binary systems of dimethyl disulfide (DMDS) -+ butane, + trans-but-
2-ene, + 2-methylpropane, and + 2-methylpropene was measured at 350 K with a static total pressure apparatus. The measured data
were reduced to phase equilibrium data with the Barker’s method. Additionally, a circulation still was used to measure isothermal
VLE of binary systems of DMDS + ethanol and + 2-ethoxy-2-methylpropane (ETBE) at 343.15 K. The DMDS + ethanol system
showed azeotropic behavior. All binary systems measured exhibited a positive deviation from Raoult’s Law.

B INTRODUCTION

Sulfur content in liquid fuels is stringently regulated by
legislation to reduce air pollution. One of the components
contributing to the sulfur content in liquid fuels is dimethyl
disulfide." Tt is important to know the phase behavior of organic
sulfur components to be able to control the sulfur content of
process streams.” Process streams originating from the Fluid
Catalytic Cracker (FCC) unit contribute to a large extent to the
amount sulfur in gasoline. One processing example of such a stream
is the etherification of a C4 alkane and alkene containing process
stream. The etherification unit decreases the alkene content, and
product vapor pressure, increases the octane number of the fuel,
and is one method to introduce bioethanol to the gasoline pool.”> A
substantially larger amount of C4 alkanes can be blended into the
gasoline as light components by the utilization of ethers, without
compromising gasoline vapor pressure specifications.

The distributions of the sulfur species is of importance not
only for determining the optimal size of adsorbent beds for the
removal of sulfur and oxygenate species from the nonreacted C4
fraction but also for the sulfur content determination of the ether
product stream.

The target of this work was to measure VLE data for DMDS
with C4 hydrocarbons, ethanol, and ETBE. The measurements
were made for the systems DMDS + butane, + trans-but-2-ene,
+ 2-methylpropane, and + 2-methylpropene at 350 K. The
measurements of the DMDS + ethanol, and + ETBE were made
at 343.15 K.

B EXPERIMENTAL SECTION

Materials. The suppliers and the purities of the materials used
are presented in Table 1. DMDS, ethanol, and ETBE were
analyzed with a GC, equipped with a flame ionization detector,
which does not detect the presence of water. The ETBE was
further purified by distillation and extraction of alcohol impu-
rities with distilled water. The DMDS, ethanol, and ETBE
were dried over molecular sieves (Merck, 3A), and the water
content was analyzed with Karl Fischer titration. Success of the
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purification was determined, in addition to the GC analysis, by
comparing the measured vapor pressure and the refractive index
with values obtained from the literature, as presented in Tables 1
and 2. The refractive indexes, np, of the pure liquids were
measured at 298.15 K with ABBEMAT-HP automatic refract-
ometer (Dr. Kernchen, Germany) with accuracy £0.00002. The
measured refractive indexes corresponded well with literature
values.*®

The degassing of DMDS for the static total pressure measure-
ments was performed by vacuum suction of DMDS placed in a
round-bottom flask. The round-bottom flask was placed in an
ultra sonic bath. Water ice was added to the water container of
the ultra sonic bath for reducing the amount of DMDS drawn to
the trap cooled with liquid nitrogen. The degassing setup is
presented in Figure 1.

Vapor pressures are shown in Table 2. Each reported pure
component vapor pressure value was separately measured in
separate VLE runs. The volatile components; C4 alkanes and C4
alkenes were degassed in the syringe pump before use by opening
the vacuum valve 10 times for a period of 10 s.

Apparatus. The static total pressure apparatus employed in
the experiment has been explained in detail by Uusi-Kyyny et al.’
Temperatures were measured with Pt-100 probes connected to a
temperature meter (Termolyzer S2541, Frontek). Probes had
been calibrated at the Centre for Metrology and Accreditation,
Finland. The pressure of the cell was measured with a Digiquartz
2300A-101-CE pressure transducer connected to a Digiquartz
740 intelligent display unit (Paroscientific). The range of the
pressure measurement was from (0 to 2070) kPa with a
temperature range from (219 to 380) K. The equilibrium cell
had a total volume of 103.3 cm® with an uncertainty of 0.02 cm”.
The cell volume had been determined by injecting degassed
water in the cell at 298.15 K. Injections of the compounds were
made with syringe pumps (ISCO 260D and 100D).
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Table 1. Supplier and the Purity of the Compounds

np(298 K)
purity mass

compound company fraction measd lit.
butane Messer Finland Oy 0.998 na na
2-methylpropane  Riedel-de Haén 0.998 na na
2-methylpropene  Riedel-de Haén 0.998 na na
trans-but-2-ene Fluka >0.998 na na
DMDS Sigma-Aldrich 0.998 1.5226  1.523°
ethanol Altia 0.9993 13593 1.3594"
ETBE Neste Oil 09997 13730 13729
o-xylene (used  Sigma-Aldrich 0.9943 1.5026  1.5029°
as diluent)

“Reference 4.

Table 2. Pure Compound Vapor Pressure, P, at Temperature

T

compound T/K P/kPa P/kpPa” P/kPa“ P/kPa?
butane 308.15 328.8 329.0 3289 329.2
2-methylpropane 308.14 467.4 468.1 465.8 461.9
2-methylpropene 308.13 413.7 411.3 407 404.6
trans-but-2-ene 308.14 317.3 317.3 317.3 na
DMDS 308.14 17.1 16.6 16.6 16.7
335.84 49.6 49.8 49.7 49.8
308.15 17.1 16.7 16.6 16.7
335.61 49.7 494 49.3 49.4
343.15 27.8 27.7 27.7 na
343.15 27.8 27.7 27.7 na
ethanol 343.15 72.5 71.9 724 72.5
ETBE 343.15 92.9 na 93.8 na

% na = not available in references in b, ¢, and d. ” Reference 4. ¢ Reference
4. “Reference 23.

The circulation still used in the measurements was of the
Yerazunis-type’ with minor modifications to the original design.®
The experimental setup is described in detail in the previous
works.*” Approximately 80 mL of reagents was needed to run the
apparatus. Temperatures were measured with a Pt-100 resistance
temperature probe, which was located at the bottom of the
packed section of the equilibrium chamber and connected to a
thermometer (F200, Tempcontrol) with a manufacturer’s stated
accuracy of 0.02 K and the calibration uncertainty was 0.01
K. The uncertainty of the whole temperature measurement
system is estimated to be £0.05 K.

Pressure was measured with a Druck pressure transducer PMP
4070 (0 to 100 kPa) connected to a Red Lion panel meter. The
inaccuracy of the instruments was reported to be +0.07 kPa by
the manufacturer. The pressure measurement system was cali-
brated against a BEAMEX PC 105—1166 pressure calibrator. The
uncertainty of the whole pressure measurement system including
the calibration uncertainty is expected to be less than 3-0.17 kPa.

Procedure. Static Total Pressure Measurements. After degas-
sing, the first compound was injected into the cell, and the pure
compound vapor pressure was measured and compared to the
value obtained from the literature correlation. If the error was
within an acceptable limit, the second compound was added into
the cell, and after the pressure had reached equilibrium, in about

Figure 1. Ultrasonic degassing setup: 1, ultrasonic bath; 2, water with
ice; 3, component in degassing; 4, stainless steel adapter fitted to a glass-
ground joint; 5, 1/8 in. ball valve; 6, Ultra Torr union connected to 1/8
in. tubing; 7, vacuum hose; 8, trap cooled with liquid nitrogen; 9,
vacuum pump.

30 min, the total pressure was measured. The addition of the
second compound was repeated until an approximately equimolar
composition was reached. At this point, the cell was drained and the
DMDS containing C4 components was directed to the ventilation
through a cold trap and an adsorber tube filled with active carbon.
The rest of the material in the cell (mostly DMDS) was removed
by drawing a reduced pressure to the cell with a vacuum pump. The
DMDS was captured in a cold trap cooled with liquid nitrogen.

Then the injection of the compounds was repeated in a
reversed order to obtain the other half of the data set. The
quality of the data was evaluated on the basis of how well the
vapor pressure of each half coincided at the equimolar composi-
tion and how well the measured pure component vapor pressure
agreed with the values reported in the literature.

Recirculation Still Measurements. Pure component 1 was
introduced in the recirculation still and its vapor pressure was
measured at several temperatures. Then component 2 was
introduced into the recirculation still. It took approximately
(45 to 60) min to achieve constant temperature. The tempera-
ture was held constant for approximately (30 to 45) min before
sampling. Steady temperature was assumed as indication that
phase equilibrium was reached.

After equilibration, the temperature in the equilibrium cell was
measured and then vapor and liquid samples were withdrawn
with a 1 mL Hamilton Sample Lock syringe and after that
injected into the cooled 2 mL autosampler vial containing
approximately 1 mL of o-xylene solvent (used as a diluent).
The compositions of both samples were immediately measured
by gas chromatography (GC). To prevent spreading of the
unpleasant odor of the sulfur compounds, the GC was placed
in a closed and ventilated cupboard.

The liquid and vapor samples were analyzed with Agilent 6850A
gas chromatograph equipped with an auto sampler and a flame
ionization detector (FID). The GC-column used was a HP-1
dimethylpolysiloxane (60.0 m X 250 #4m X 1.0 um). The injector
and FID were set at 250 °C. Helium was used as the carrier gas ata
constant flow rate of 1 mL-min~ " and inlet split ratio 100:1. The
initial oven temperature was held at 70 °C for 2 min and then
increased subsequently to 150 °C at rate of 8 °C min~ ' and was
held at 150 °C for 3 min. The total run time was 15 min.

The pure components were used to determine the retention
times, after that the GC was calibrated with 10 mixtures of known
composition that were prepared gravimetrically. To reduce the
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Table 3. Physical Properties of Pure Compounds®

DMDS butane 2-methylpropane
CAS Registry No.” 624-92-0 106-97-8 75-28-5
Tc/K 606° 425.12¢ 407.8°
pc/MPa 5.36° 3.807 3.60¢
» 0.265° 0.200164¢ 0.183521¢
v;/em®-mol 89.118° 101.394° 105.357
A 7.1352
B 3080.0182
o —55.7933
Tonin 332.19
Tonax 382.02
|APS,.,| /kPa 02

2-methylpropene trans-but-2-ene ethanol ETBE
115-11-7 624-64-6 64-17-5 637-92-3
417.9¢ 428.6° 5147 509.4
4.007 4.107 6.137¢ 2.934¢
0.19484¢ 0.217592¢ 0.634" 0.3162°
95.3646" 93.6136* 58.62¢ 138.8¢
9.988¢ 7.0796"
3803.989¢ 2766.9942"
—41.535¢ —50.5078"
300.40 312.51
345.10 345.90
0.1 0.0

“ Critical temperature, T, critical pressure, pc, acentric factor, @, molar volume v; at 298 K. b Supplied by author.  Reference 4. Reference 5. °PS/MPa =

exp(A — [B/(T/K + C)]).fReference 19. 8 Reference 20. " Reference 21. |APS,..| = (2£1|P,~,C31C

- Pi,expl)/N'

volume of the sample, the solvent was added. The response factor
F, of component 2 was determined with eq 1.

my A

21 _F 1
mlA2 : ()

Therefore, the vapor or liquid composition of component 1 can
be calculated from

Ay
M,
=M 2
o= i (2)
M, M,

where A; and A, are the GC peak areas, M; and M, are the molar
masses, and m; and m, are masses in the gravimetrically prepared
sample of components 1 and 2, respectively. The maximum error
ofliquid and vapor composition measurements is estimated to be
0.003 in mole fraction.

Data Reduction. Thermodynamic Model. The activity coeffi-
cients were calculated from

P, Tt
Vi = y_ss exp ——dpP (3)
P Y J, RT

where y; is the mole fraction of component i in the vapor phase, P is
the total pressure of the system, ¢; is the fugacity coefficient of
component i in the vapor phase, x; is mole fraction of the
component i in the liquid phase, P} is the vapor pressure of pure
component i at the system temperature, ¢,—S is the pure component-
saturated liquid fugacity coefficient at the system temperature T,
V¥ is the molar volume of pure component i in liquid phase at the
system temperature, T is temperature in Kelvin, and R is the
universal gas constant (8.31441J- K '-mol ).

The Soave—Redlich—Kwong equation of state with quadratic
mixing rules in the attractive parameter and linear in covolume
was used for vapor-phase fugacity coefficient calculation.'® The
binary interaction parameter in the quadratic mixing rules was set
to zero. The Rackett equation'" was used to calculate the liquid
molar volume in the Poynting factor. Compound properties used
in the data reduction are shown in Table 3.

Static Total Pressure Method. The data measured in the static
total pressure experiment consisted of the total pressure, tem-
perature, and the total composition inside the cell at equilibrium.
To obtain the compositions of the vapor and liquid phases, the
data were reduced by the Legendre polynomials as the liquid
activity coefficient model.'* The data reduction was performed

according to the Barker method."® The amount of parameters for
Legendre polynomials'* was increased until the average absolute
deviation of pressure was below the uncertainty in the measured
cell pressure. The details of this data reduction have been
reported by Uusi-Kyyny et al.® The data were reduced with the
in-house software, VLEFIT."* The data reduction was also made
with the Wilson model'® as the activity coefficient model. The
objective function (OF) used in the barker method is presented
in eq 4, where Ny g is the number of points used in the fit.

Nvie
1 |p1 cale — Pi measl
OF = )y )
NVLE igl

(4)

pi, meas

Circulation Still Measurements. Also these measurements
were processed with VLEFIT software.'* The Antoine param-
eters for vapor pressure and other properties used in the
calculations are presented in Table 2.

The liquid-phase activity coeflicients of all systems studied were
correlated with the Wilson'® model. The objective function (OF)
used for fitting of the activity coefficient model parameters is given
by eq S, where Ny g is the number of points used in the fit.

Nyig 2 k k
1 yicc_yiex
oF = L3 3 Piate “Vien (s
Nyipk=1i=1 Yijexp

Error Analysis of the Static Total Pressure Measurements.
Maximum uncertainty in the liquid density correlation was
estimated as the maximum absolute error between the data sets
used to obtain the correlation and the corresponding calculated
value at temperatures from (270 to 310) K. The maximum error in
density was 0.30% for butane, 0.28% for 2-methylpropane, 0.15%
for 2-methylpropene, 0.76% for trans-but-2-ene, and 0.06% for
DMDS. Uncertainty in the injection volume was 4-0.02 cm’,
obtained from calibration experiments with distilled water. Un-
certainty in the temperature of the pump was £0.1 K, and
uncertainty in the pressure of the pump was £20 kPa, which
affected the uncertainty in the density and the uncertainty in the
compressibility of the liquid inside the pump. Uncertainty in the
cell temperature measurements was estimated to be 3-0.03 K.
Uncertainty in the cell pressure measurement was 0.4 kPa.
Uncertainty in the reduced data depended on the uncertainty in
the measured values of the temperature, the pressure, and the
overall molar composition. Maximum theoretical error of the
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Figure 2. Experimental pressure and liquid- and vapor-phase mole
fractions at 350 K of DMDS (2) + butane, x @, y O; -+ 2-methylpropane,
x @,y <; + 2-methylpropene, x B, y O0; + trans-but-2-ene, x A, y A.
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Figure 3. Activity coefficients at 350 K: (O) butane (1) + (@) DMDS
system; (<) 2-methylpropane (1) + (@) DMDS system; (H)
2-methylpropene (1) + () DMDS system; (A) trans-but-2-ene (1)
+ (a) DMDS system.

Table 8. Isothermal VLE Measurements at 343.15 K, Liquid-Phase (x,) and Vapor-Phase (y;) Mole Fractions, Pressure (P), and
Activity Coefficient (¥;), for Systems DMDS (1) + Ethanol (2) and DMDS (1) + ETBE (2)

DMDS (1) + ethanol (2) at 343.15 K

DMDS (1) + ETBE (2) at 343.15 K

% b2t P/kPa Y1 123
0.000 0.000 72.5 1.00
0.031 0.053 744 4.53 1.00
0.072 0.105 76.1 391 1.01
0.141 0.164 774 3.19 1.04
0.233 0.214 77.6 2.52 1.09
0.325 0.246 77.0 2.06 1.18
0.446 0.269 75.5 1.61 137
0.569 0.303 732 1.38 1.63
0.720 0.344 68.5 1.16 2.22
0.825 0.396 62.9 1.07 3.00
0911 0.498 52.8 1.03 4.12
0.962 0.658 40.6 1.00 511
1.000 1.000 27.8 1.00

Xy N P/kPa Y1 V2
0.000 0.000 92.9 1.00
0.093 0.044 88.2 1.47 1.00
0.207 0.096 82.4 1.35 1.02
0.332 0.156 75.9 1.26 1.04
0.461 0.221 69.0 1.17 1.08
0.582 0.292 62.0 1.11 1.18
0.700 0.374 54.8 1.04 1.25
0.822 0.498 45.7 0.99 142
0.894 0.624 39.7 0.99 1.55
0.944 0.760 34.6 1.00 1.64
0.974 0.873 31.0 1.00 1.70
1.000 1.000 27.8 1.00

overall molar comlposition was calculated by the method presented
by Hynynen et al.'® Maximum uncertainty of the reduced data was
obtained by alternating the measurement uncertainties between
their minimum and maximum values, one at a time, and calculating
the average deviation of the results.'”"®

B RESULTS AND DISCUSSION

Static Total Pressure Measurements. The measured pure
component vapor pressures agreed well with the pressures
calculated with literature correlations, as shown in Table 2.
The total pressure of each measured system coincided well at
the equimolar composition.

The measured data, equilibrium-phase compositions, and
compound activity coefficients are shown in Tables 4—7. Equi-
librium-phase compositions are presented in Figure 2 and
activity coeflicient of the regressed C4 alkane and C4 alkene
systems are presented in Figure 3. All measured binary systems
showed a positive deviation from Raoult’s law.

As the measured pure component vapor pressures were
acceptable, both sides of measured binaries coincided, and the
Legendre polynomials could describe the data with good accu-
racy. The data were considered to be of good quality.

Also the Wilson equation was used for the regression of the
measurements with the Barker method. The infinite dilution
activity coeflicient values obtained with the Wilson activity
coefficient model were close to the ones obtained from the
regression using the Legendre polynomials.

Circulation Still Measurements. Vapor pressure of dimeth-
yl disulfide, ethanol, and ETBE were measured in previous
studies.'” ' These parameters with the recommended tem-
perature range of the vapor pressure equations are presented
in Table 2.

The isothermal VLE measurements (P, x;, and y;) and
calculated activity coeflicients are reported in Table 8. The
P—x,—y, diagrams are presented in Figure 4. The y,—y,—x;
diagram is presented in Figure 5. All systems show positive
deviation from Raoult’s law. No azeotropic behavior was ob-
served in system dimethyl disulfide + ETBE at 343.15 K. A
maximum pressure azeotrope was found in the ethanol (1) +
dimethyl disulfide (2) + system (azeotropic conditions: x; =
0.801, P = 78.1 kPa, T = 343.15 K).

Wilson interaction parameters with small lambda (4, and
A»1) and the average of the absolute deviations of pressure and
vapor-phase composition in mole fraction for the measured

2508 dx.doi.org/10.1021/je200039y |J. Chem. Eng. Data 2011, 56, 2501-2510
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Figure 4. Experimental pressure and liquid- and vapor-phase equilib-
rium composition in mole fractions at K of DMDS (2) + ethanol, x O, y
@®; DMDS (2) + ETBE, x B, y 0J; Wilson model, —.
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Figure 5. Activity coefficients at 350 K of (@) ethanol (1) + (O)
DMDS system; (l) ETBE (1) + (O) DMDS system.

Table 9. Legendre Liquid Activity Coefficient Model Parameters (Legendre, a;;), Absolute Average Pressure Residuals (|AP|),
and Infinite Dilution Activity Coefficients (y,”, 7,™), Wilson Liquid Activity Coefficient Model Parameters (Wilson 4, ), Absolute
Average Vapor-Phase Composition Mole Fraction Residuals (|Ay|) at Temperature of Measurement (T)*

system 1 system 2
350K 351K

Legendre, ag 0.986850 1.11305
Legendre, a, o 0.0373437 0.0582667
Legendre, a, 0.0162596 0.0241948
Legendre, aso 0.000444541 0.00234212
|AP|/kPa 02 02
Legendre y,7, v~ 2.63,2.83 2.93,3.31
Wilson A, ,/K 123212 129.109
Wilson 4,,,/K 277.461 334.701
|AP|/ kPa 0.2 0.3
1Ay
Wilson 7, y,~ 2.63,2.84 2.95,3.33

system 3 system 4 system S system 6
350 K 350 K 343 K 343 K
0.7596S53 0.744936
0.0840095 0.0618308
0.0218635 0.0191669
—0.000385644 —0.00122994
0.4 0.2
2.01,2.38 2.02,2.28
41.3975 65.1284 567.97 34.487
267.117 228.381 171.77 161.70
0.8 0.6 0.2 0.3
0.001 0.002

1.99,2.37 1.99,2.25 6.27,5.10 1.77, 1.56

“System 1 (butane + DMDS), system 2 (2-methylpropane + DMDS), system 3 (2-methylpropene + DMDS), system 4 (trans-but-2-ene + DMDS),

system S (ethanol + DMDS), system 6 (ETBE + DMDS).

systems are presented in Table 9. The averages of the absolute
deviations for pressure and vapor-phase composition are small.
Good agreement between measurements and model were
achieved for the two systems measured. The activity coefficients
at infinite dilution for all systems measured calculated from the
Wilson model are also shown in Table 9.

The integral test,'* infinite dilution test,”” and point test'”
were applied to check the consistency of the measured VLE data.
All systems measured with the circulation still passed the
consistency tests applied.
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